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Giauber Dynamics of Fluctuations 
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We derive the time evolution of the normal fluctuations of a classical lattice spin 
system induced by a generalized Glauber dynamics. The canonical form of this 
dynamics is derived. We prove that it is asymptotically (i.e., after the central 
limit) free. The results are applied to give a rigorous proof of the macroscopic 
reciprocity relations and the linear theory for small deviations from equilibrium. 

KEY WORDS: Central limit theorem; normal fluctuations; reciprocity 
relations. 

1. INTRODUCTION 

The static fluctuations for classical lattice spin systems in equilibrium 
at high temperature are physically well understood. As an illustration, 
consider #,-~e /m, fl small enough, the unique Gibbs measure at inverse 
temperature fl for an lsing spin system {a (x )=  +I ,  x E Z  v} interacting 
according to some local translation invariant potential H. Then, the total 
magnetization (1/IAf) ~x~A a(x) in a box A converges to the average spin 
a = ( a ) ,  in the measure tt with Gaussian fluctuations around it. Of course, 
other quantities, such as the energy density fluctuations, may be equally 
interesting. If f (a) and g(a) are two local functions of the configuration o, 
then their fluctuations 

1 1 
-- .~ [ rxg (a ) - -  ( g ) ~ ]  ]AI 1/2x~a ~ [Zxf(tr) (f)u]; iAll/2x~ A 

with zx the translation over lattice vector x ~ 7/v, become jointly Gaussian 
white noise as AT?'/' with a covariance of strength ~ : ~ ,  [( f zxg)u-  
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( f ) ,  (g )~] .  One of the purposes of this paper is in fact to give a precise 
formulation of such a central limit theorem jointly describing all macro- 
scopic fluctuations. 

The main subject is to introduce a dynamics on this large space of 
macroscopic fluctuations, starting from a given microscopic stochastic time 
evolution. There is a variety of stochastic dynamics which leave the Gibbs 
measure p invariant. Examples of such are the so-called Glauber dynamics, 
in which the spins flip with rates c ( x , a ) > 0  satisfying the condition of 
detailed balance: 

c(x,  a)  = c(x,  a ~) e t~,l,u~,l 

where A , H ( a )  == _ H(a~)  - H ( a )  is the energy change due to a spin flip at 
site x e Z V [ a X ( y ) = a ( y )  for y C x  and aX(x)= -a (x) ] .  

Quite apart from the particular model, the question now arises of how 
to describe the fluctuations also dynamically. Put differently, how does the 
induced time evolution look for the coarse-grained quantities as considered 
above'? A very interesting situation occurs in the case where there are 
locally conserved quantities. For instance, for the Kawasaki-type dynamics 
in which nearest neighbor spins are exchanged with certain rates, the total 
spin is a conserved quantity. Dynamically, then, the corresponding fluctua- 
tion fields are singled out from all the other fields. One argues (and in some 
cases proves) that in this case the fluctuation fields of any local function 
become proportional to the fluctuations of the conserved field. The physical 
intuition behind this is the occurrence of a natural scale separation: the 
fluctuations of nonconserved quantities change in time on a much faster 
scale than those of the conserved quantities. This phenomenon is well 
studied and sometimes goes under the name of the Boltzmann-Gibbs 
principle. Detailed discussions and references can be found in refs. 1-5. 

Such an effect of establishing a certain hierarchy between the different 
fluctuation fields is not always present. Consider, for instance the Glauber- 
type processes introduced above. There, there is no conservation law. 
Therefore, there is no a priori reason to prefer the magnetization fluctua- 
tions above any other field, and there is no mechanism by which after an 
appropriate space-time scaling we can find an autonomous dynamics for 
the coarse-grained magnetization. Put technically, if the BBGKY hierarchy 
is not closed at a microscopic level, then it will not close also at a macro- 
scopic scale. 

This problem was studied in detail in 1979 by Holley and Stroock. (6) 
They considered central limit phenomena for various interacting particle 
systems (for a review on the latter, see ref. 7). They obtain that the time 
evolution for the limiting fluctuation field corresponding to the magnetiza- 
tion for a Glauber dynamics is Markovian if and only if some rather severe 



Glauber Dynamics of Fluctuations 761 

restrictions on the spin flip rates are imposed. Basically, one has to require 
that the magnetization field satisfies a closed evolution equation, i.e., there 
is a constant 7 such that 

d 
a-t (,r(x) }, = - 2 ( c ( x ,  ,r) ,r(x) }, 

with 

lim ! I -~  ~'  [c(x ,  a) ~(x )  - 7(~(x)  - a ) ]  = 0 
x ~ A  

Here we take up the same problem as in ref. 7, but continue to work 
consistently with all fluctuations on the same footing. That is, we must con- 
sider the induced time evolution on the space of all fluctuations. No extra 
restrictions on the spin flip rates are then necessary. This requires, however, 
the more abstract mathematical formulation of the space of fluctuations, 
but this problem is also present statically. We then show that enlarging the 
configuration space in this way allows us to find the limiting dynamics as 
an Ornstein-Uhlenbeck type process on the fluctuation fields. We thus 
derive quite explicitly the stationary Gaussian Markov process under 
which the macroscopic fluctuations jointly evolve. Once this structure is 
clarified (Sections 3 and 4) we are able (in Section 5) to discuss, always in 
the same context, the linear response of this macroscopic system to small 
perturbations of equilibrium. We then derive linear relations between the 
so-called thermodynamic flux and force, which here are the equivalent of 
what is done for fluctuating hydrodynamics in the corresponding 
Green-Kubo relations, in the case where there is a conserved quantity. 

2. THE  M I C R O S C O P I C  S Y S T E M  

As microscopic system we consider here a classical lattice system 
endowed with a Glauber dynamics. As usual, Z" represents the sites of a 
v-dimensional lattice, ~ ( Z  v) the directed set of finite subsets of Z v with 
direction the inclusion. With each x ~ 2U we associate a configuration space 
Kx, a copy of a finite set K. For each A ~ ~(2~v) consider the tensor product 
space KA=@x~,~Kx and denote by CA the set of real continuous 
functions on KA. The set CL = UA CA is called the set of local observables 
of our system. Denote also ~ = Kz,, which by Tychonov's theorem is a 
compact Hausdorff space; ~ is called the micro configuration space of the 
system. 

States of the system are positive normalized continuous linear forms 
on Ct. and are given by probability regular Borel measures/~ on J{': 

/~(.f) = ; d/~(m) f(m); feCL 
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The group of lattice translations induces a group of transformations 
{zxlxe2U} of CL such that zxC.~=CA+x, AeaJ(~-'). 

For this paper we assume that we have given a measure # which is 
translation invariant, i.e., # o zx = # for all x e Z~. 

Next we introduce the microdynamics of our system. We consider a 
generalized Glauber dynamics ~7 9J in the following form: suppose we are 
given a linear map Lo: C~. ~ CI. 

(Lof)(tO) = ~ c(tO, tOo) ( f ( , , , oco)  - f ( o g ) )  
Ko 

(1) 

where c(to, .) is a positive function on Ko for all co, the function 
co ~ c(to, tOo) is a measurable function on . 5  for all tOo ~ Ko, and 

(,,,0co,) = ~co'~ if x ~ 0  
(too if x = 0  

Assume further that C,, = sup,,, IIc(o~,. )ll,, < ~,, where I1" ll,, denotes the total 
variation norm; then we have the following properties, which are the main 
tools used in the next section: 

(a) [Itof[I ~< 2 [IColl [If If 

Lo(f  2) - 2fLof>~ 0; f E Cl. (2) 

(b) L o f = 0  if 0 r  (3) 

(c) Lo(l ) = 0 (4) 

Assume also that Lo is of finite range, i.e., there exists an R > 0 such 
that for all ieT/~, Ill >R ,  one has 

6:=sup{[lc( to , . ) -c( to ' , . ) l l~;( to) j=( to ' ) j i f i~ j}=O (5) 

and that Lo is detailed balance (or microreversible) with respect to a basic 
measure #: 

lt(Lo(f) g) = #(fLo(g)); f ,  g e CL (6) 

In order to fix the ideas, one can keep in mind the example of the Ising 
model, where K =  {0, 1} and # is the equilibrium state at inverse tem- 
perature/~ = 1/kT. The dynamics is then determined by the map 

,o--{exp(. Z 
(o,i> 

where r/o is the spin-flip operation at the site 0e  2U. 
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Define L k f = L o z _ k f  for all f~CL;  then L=~k~zvL k defines a 
Markov generator which is self-adjoint and negative definite. By the finite 
range condition (5) the map L is local in the sense that L: CL --* CL; L is 
translation invariant by construction and (6) implies 

/~oL=O (7) 

The Glauber dynamics is then given by the semigroup {~,~ = exp tL, t ~ ~ § } 
of contractions of Co. This finishes the description of the microsystem; it 
is given, up to technicalities, by the triplet (CL,/~, 7,). 

3. NORMAL DISTRIBUTION OF FLUCTUATIONS 

As indicated above, we are interested in this paper in the derivation of 
some properties of the theory of fluctuations. For every f e  CL, denote by 
~, the local fluctuation of f with respect to the measure/~: 

1 
.7,=1A-~/2 ~ ( z x f - # ( f ) )  

x ~ A n  

where A, is a cube in Z" centered at the origin with edges of length 2n + !, 
nE ~; [A,I is the volume of A, or the number of points in A,,. In proba- 
bility, the central limit theorem deals with the limit lim . . . . .  ~,,. We will 
assume that the system has normal fluctuations, i.e., that the central limit 
exists for all elements of C~. In the literature there are many different 
sufficient conditions and strong results for the central limit theorem (see, 
e.g., ref. 10). The conditions are all of the type of mixing properties of the 
basic measure /a with respect to the space translations. Here we are not 
discussing this matter, but we make the assumption that the central limit 
exists in the sense of Definition 3.1 below. 

We define the existence of normal fluctuations for the system (CL, p) 
in terms of the characteristic functions. From now on we assume that the 
system satisfies: 

Definition 3.1. 

0) 

(ii) 

The system (C L, p) has normalfluctuations if: 

For all f, g ~ CL : 

[Iz(fzx g)-- It(f) #(g)[ < 
X E ~  v 

For all f E  CL, the central limit holds: 
_ _ / , 2  

lim i z ( e x p i t ~ ) = e x p - - ~ - ( f f ) u ,  t eR  
n ~ cr_o 

822/62/3-4-17 
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where 

( f , g ) ~ =  lim /~ (L~ , )=  ~ [#(fTxg)-#(f)#(g)]; .[;geC,. 
rt  " *  ~O x E ~ v  

We do not discuss here the mixing conditions on the measure # in order 
that the system satisfies this definition. For this we refer to the literature on 
central limits (see, e.g., ref. lO and also ref. 11 ). 

Consider now CL equipped with the bilinear form ( . , . ) u .  Dividing 
out the kernel of this form, one gets a pre-Hilbert space of elements, 
denoted by I f ] ,  f e  CL. By completion one gets a Hilbert space ~ ,  with 
scalar product (- ,  �9 ) , ,  where we denote, if no confusion is possible, 

(.f, g ) , , =  ( [ . f ] ,  [g])~, 

a n d f =  I f ] ,  g =  [g]  for f,  g e  ~,,. 
Remark that, e.g., f and all its translates zxf, x e ~, coincide in .*~,. 
Before formulating the main result of this section, we recall the notion 

of abstract Wiener spaces.I t 2) 
Let (H, ( -, �9 )) be a separable Hiibert space; the Gauss measure #~, is 

the set function from the cylinder sets in H to R +' 

1 - (  I-~ Y' ft.:exp { -  ~ (f,.[') } d f e) - 

where E = { f e  HI P, fe  : ;  : is a Borel set and P, an n-dimensional pro- 
jection }. If dim H < oo, then #~r extends to a measure on H. If dim H = ~i~, 
then/~:~, is not a-additive. It is, however, possible to construct a a-additive 
extension /~ of #~ on a Banach space B with H dense in B. The a-field 
generated by the cylinder sets of H is the Borel field of B and 
~(E) = #~(Em). Remark that /~ is a Gaussian measure on B, i.e., for all 
x*eB*cH, B* the dual of B, the random variable x*(.) is normally 
distributed with mean zero and variance (x*,x*). This standard 
construction (H, B) is called a Wiener space and/~ a Wiener measure, 

T h e o r e m  3.2. If the system (CL, #) has normal fluctuations, then 
there exists a Wiener space (B, ~ )  and a linear map 

b: Ct. ~ L2(B, Ft) 

with/~ the Wiener measure, such that for all f e  CL, the random variable 
b(f) is/~-normally distributed and 

lim #(exp/~.) = exp - �89 f ) u  =/2(exp ib(f)) 
n --~ QO 

The map b is translation invariant, i.e., for all x e 7/~:.b o z~ = b. 
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ProoL As the space K is finite, the vector space [Co]  ~ CL/Z v is 
separable, the above construction yields that ~ is a real, separable Hilbert 
space. 

This guarantees the existence of a Wiener space (B, ~ ) .  
Consider now the map 

n: B*c~--*L2(B, /7):  h~n(h )  

with n(h): B--* R: f ~ h ( f ) .  
From ref. 12, Lemma 4.7, 

( h, h )u = fB h(f)2 dfi(f) =- (n(h), n(h) )~ 

where ( - , . ) ~  is the scalar product in L2(B,/~); i.e., n is isometric. As B* 
is dense in H, n has a unique continuous extension, denoted by ( h , . ) u ,  
h E H. The random variable ( h , . ) u  on B is defined/~ a.e.; it is normally 
distributed with mean zero and variance (h, h)u" 

Be i'<h' "')" d~(.f) = e ~ (,2/2)<h.h)~ 

The theorem follows by defining the map h as 

b: CI ~ L2(B,~) 

h --, h(h) = < [ h i , .  >,, 

and by the Definition 3.1 of normal fluctuations. II 

This theorem shows that the central limit 

"lim" L = h(f)  

yields a map b from the local observables CL into L2(B,/~), i.e., we realized 
an identification of the macroscopic fluctuations with the normally dis- 
tributed random variables for the Wiener measure on an appropriate 
Wiener space. 

The physical notion of coarse graining consists in the fact that this 
map b is not injective; it is composed of the maps 

~ -, ~ -~ L~(S, ~) 

f ~ I f ]  - .  ( [ f ] , "  ] )~, 

The second map being injective, the coarse graining is situated in the first 
one. 
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Motivated by this theorem, we consider the elements of L2(B, ~) as 
the set of macroscopic fluctuations of our system. 

Remark that by construction the set [rg~.] is dense in ~(~. By ref. 13, 
Theorem 3 this implies that the set {exp ib(f)lfecgL} is total for L2(B, Ft). 
The above construction is canonical in the sense that this density property 
holds for all choices of Wiener spaces (B, ~ ) .  

4. GLAUBER D Y N A M I C S  FOR FLUCTUATIONS 

As discussed above, in this section we study the dynamics on the 
fluctuations, i.e., on L2(B, ~), induced by the microdynamics ),,=exp tL, 
where L is given in Section 2. First we transport the generator L to the 
macro phase space, the Hiibert space ,~ff.~. 

Lemma 4.1. The generator L induces a map .U on the Hilbert 
space ,~, such that (i) ~ is densely defined, (ii) ~ is symmetric, (iii) .U is 
negative definite. 

Proof. For any [ f ]  e [C~.] ~.~, ,  define 

.S('[f] = [Lf] 

This definition is independent of the representant; indeed, let [ f ]  --0; 
then 

(EL./'], [ L f ] ) ~ =  lim y((LT)2) 
n ~ c r d  

= lim ~u(L L27,) 
n 

~< lim #(y2)1/2 i~(L2f, LZf,)l/2 
n 

3 1/2 =0  = <Ef],  [f],~l/2.o <[L2f], [L2)C]. - ,  

hence ~ I f ]  = O. 
Clearly, because of the locality of L and the construction of afro, ~ is 

densely defined. 
That ~ is symmetric follows immediately from L being microrever- 

sible, (6). 
Finally, (iii) follows from the dissipativity of L, (2), and the invariance 

/~oL =0, (7): 

2 ( I f ] ,  ~ [ f ] ) ~ = l i m  {2#(~LjT.)-#(L(f~))} <~0 | 
n 

In the following theorem we transport the generator to the Wiener 
measure space level. 
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T h e o r e m  4.2. If the system (CL,/~) has normal fluctuations, then 
for all f, g E CL 

lim #(er ") = (e -ib(/), Eeib(g));~ (8) 

where L is a densely defined linear map on LZ(B,/i) explicitly given by 

s (ib(~g) + (b(g), b(~g) ) z) e ib(g) 

where b is defined in Theorem 3.2 and A a in Lemma 4.1. 

ProoL First remark that the map/ ,  is densely defined by the remark 
following Theorem 3.2. Using Theorem 3.2 for all h~, h 2 ~ CL, the map 

s~ • ~ ~(e i~(h' +.~h~j) 

is analytic and one has the formula 

fi(eib(h'~b(h2) ) = i~z(e ib(h')) ~t(b(hl ) b(h2) ) 

Using this, formula (8) reduces to 

lim It(e(7"Le i~") = -fft(e iO(./+ g)) fi(b(f) b(~g)) 
n 

which remains to prove�9 
For the sake of clarity we work out first in detail the proof in the case 

that f, g~ C~o~ a n d / ~ ( f ) = ~ ( g ) = 0 .  Using the form of L and the locality 
(3), one gets 

#(eiLLeie")= k~.~. ~ t~(jOk ei'J)+gJ'/ l'/~-~"le'rk/ l'/T-~"fLkeie~/ l'JT-~"l) 

where ft = z t f  ; l e l ' .  
Then by expansion of exponentials, by (4), and the symmetry of Lo, 

(6), 

#(ei?"Le'~")=k~A. ~ (jOk ei(fJ+gJ)/ ["/~"l ( 1+ [N/~n[ ilk + "")  

�9 L k ( l +  igk + ...)) 
= ~ i2l~(I-I ei ' fJ+gJ)/I .AwAIfkLkgk)+O(~) 

k~..  -j~k IA.I ] 
where 

O ( [ ~ A ~ [ )  = ~ ~ .(jHke~(fj+gA/i, eq-h-~.li '+'" ) 1 
k~A~ /+,,,>~3 l!m! f~Lkg'~ [A,[ ~z+')/2 
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which is majorized by 

l+ rn~> 3 

As 

it follows that 

IlfllZltgll m ilL011) 1 
l! m! ]A,I , /2 . . . . .  * 0 

lim lie gcr+ x)/t,/ih'7 _ I II = 0 
n 

�9 I ~ #(eiC?.+~:.)r,(fLog)) lira/4 e *T"Le '~'" ) = hm - [--~l k~ A. 

=l im-{~,~l#(e"Z '+~" ' ( ' f { , ,g ' . )+l ' (e i 'Z '"c" ' )#( fL 'g)  } , ,  

= - f t (e  'h(./+ ")) fi(b(.f) b(&fg)) 

where we used the existence of the limit n ~ ~ as a consequence of 
Definition 3.1. The last equality is based on the symmetry of L and the 
translation invariance of #, yielding 

1 
f i(b(f)  b(&~'g)) = lira ] - ~  ~ #(f~(Lg),) 

[ .I i4~A. 

1 
= l i m - -  ~ la(Lj(f~)gj) 

. IAA , , j~. , .  

1 
= l i m - -  ~ #(L~(f~)g~) 

= It(fLo g) 

This finishes the proof for the case f ,  gE C{o}. For general functions f .  
A a = ~k A a, then one has L , f ,  ~ 0 implies k ~ A ~ or i e A,~. g~CA~, denote * 

Analogously as above, 

lim It(er ~") = lim - - -  1 ~ #(ei(L+~.) ~ f~L, gi) 

' ( ) = - / ] ( e ' ~  I 2 # T, ~, NLogj  
k e A n + d  i, j e A d  

= - ~ ( e  ib(y+ ~)) ~(b( f )  b(Leg)) 

yielding a complete proof of the theorem. 1 
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In Lemma 4.1 we proved that the map ~ on ~ is symmetric and 
negative; hence it has a self-adjoint Friedrich extension, which we continue 
to denote by ~.e. It follows that 5e is exponentiable to a semigroup 
{~, = exp t ~ ,  t/> 0} of linear positive contractions, strongly continuous in 
the parameter t. 

Theorem 4.3. The semigroup of contractions (7,),~o on 
induces a semigroup of contractions (~t),~ o on L2(B, fi) explicitly given by: 
for all f ~ ~ffu, 

~,(exp ib(f))=exp{ib(~,f)- �89 (1 - 7~)f ) , ,}  (9) 

It satisfies the reciprocity relations: for all q~, ~k ~ L2(B,/~), 

(m) 

The semigroup (~7,),>~o is strongly continuous in t with generator a self- 
adjoint extension of the map/~ of Theorem 4.2. 

Proof. Clearly, by (9), ~7, is a densely defined linear map of L2(B, fz). 
The semigroup property of ~, is an immediate consequence from its defini- 
tion and the semigroup property of (~,,), >o on ..,~,. 

Now we show that the ~, are contractions. 
Let 

i=1 

Then one computes with the Wiener measure/~ 

(~ ,@)~- ( ' ~ ,@, ' 7 ,@) ,  = ~ ~ipj{e<-ti'J'>"-e <j;'y~-5>"} (.) 
i , j  = I 

where P i=  2te <j~,/;>;2 
Using the contraction property of ~,, 

(g,g)>~@,g,y,g), ge~e~,, t>~O 

one gets 

PiPj{<.~,J}>,,-- (f,, ~,zf, ),,} I>0 (**) 
i , j = l  

for all P ie  C and ji~ e ~gu. 
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Using the well-known matrix property that if A=(ao)>~O and 
B=(b0)~>0 then (a0b~j)>~0, one derives immediately by iteration the 
positivity of the matrix 

(a a -  bii ) - (a,:i- bi/) a 0 b 0 , n ~ N 
/ = 1  

if the matrix (aiy-b~j)>~O, and straightforwardly for the exponential 
function 

(e '+ - e h') >t 0 

Hence, take a0.=(f~,f i )~, ,  b i j = ( f i ,  . ; then (**) implies the 
positivity of formula (,), proving the contraction property. In order to 
prove the reciprocity relation, it is now suff• to check the equality 

( Y, eib{ l'}' eU'{*'l ) r, = ( eit'~ 11, y, ei,,,~ ),; 

for f,  gE.g;,. 
But this follows from the symmetry of y, on o~ and an explicit and 

easy computation using the definition formula (9). The strong continuity 
t + ~7,: because of the group property and the boundedness of the maps "7, 
it is sufficient to prove the continuity at t = 0. As the maps are contractions, 
it is sufficient to prove 

lim I I~-L~, t la=0 
t ~ O  

for all ~, E LZ(B, ~) of the form 

r ~ 2je ib~f~J, 
j = l  

As 

j = l  

it is sufficient to prove 

But 

c, fiE<, 

12jl lie +b~*)>- ~,eib~r 

lim Ile*b<g~-- ~,eibtg)ll~,=O; g ~ Off~ 
t-+O 

Ileib(g) -- ~,eib<g)fl ~, 

= 1 + e x p { - - ( g ,  (1--),2) g ) u } - - 2 e x p { - - ( g - - y , g ,  g - - ? t g ) u  

-�89 (1-~2) g).} 

tends to zero if t --+ O, because t -+ ~,, is strongly continuous on ~ .  
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Finally, one computes the generator of (~,),~>o on a dense set of 
L2(B, ~), again using formula (9): 

d 
& ~ , e  it'~*) = { i b ( ~ g ) +  (g ,  L~g)1, } e 'h~g~ 
dt , = o 

Using the equality (see proof of Theorem 4.2) 

(g,  ~ g ) u  =/~(b(g) b(s 

one completes the proof of the theorem. I 

This result completes the description of the macrodynamics ~7, = exp tL 
acting on the normal fluctuations of the system and induced by the 
Glauber dynamics acting on the microsystem. It is interesting to remark 
that the map /~ and hence also the dynamics ~7, depend on the basic 
measure p (see the limit Theorem4.2). The map /~ has the important 
property that it maps polynomials in the Wiener random variables b(f) ,  
fe .~ff  u, into polynomials in these variables of the same order. Such kinds 
of maps are called generalized free because they describe a free evolution 
on the level of the random variables b( f ) .  As an illustration we give the 
map L explicitly on the monomials of order one and two: 

L h ( J )  = b( L~f ) 

/~fh(./) 2 ) = 2b(c~f) b( f )  - 2 (b( f ) ,  b(c~J ") )r, 

In fact, one checks easily that these are sufficient to characterize completely 
/~ and hence ~, on L2(B, ~). 

So far we have given a rigorous mathematical model description of the 
basic ingredients of the phenomenological theory of fluctuations. In order 
to make the connection with this theory somewhat more explicit, we make 
a small digression into this physical theory. 

One assumes ~t4) that the macroscopic behavior of a system is 
describable by the points of a finite-dimensional space F ~  R". The space F 
is assumed to be obtained by a coarse-graining procedure from a 
microscopic (infinite-dimensional) phase space. The macro states are taken 
to be probability measures on F. 

One assumes that, due to the coarse graining, the equilibrium measure 
is a Gaussian measure on R": 

dlx,(ct) = e-m2k)~.s~) da 

where S is a positive-definite, symmetric n x n matrix, (., - ) is the Euclidean 
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scalar product, and k is Boltzmann's constant, which we put k = 1. Denote 
the random variables 

b(x) = ( x , . )  - (x ,  S . ) ,  

They have a Gaussian distribution: 

x e F  

t *  

kt:~(eib(x))= JR. ei< .... > dB~(~) = e < ..... >/2 

The time evolution is assumed to be a flow on the phase space determined 
by a linear differential equation 

d~( t ) 
dt -Leu ( t ) ,  ~ e F  

where Le is a linear map on F. The property of microreversibility implies 
(~, Left)= ( ~e~, fl); ~, t ier.  

The reciprocity relations are nothing but this symmetry expressed by 
duality on the Gaussian random variables: if 

Eb(x) = b(Lex) 

the symmetry of Le becomes now fo r / ,  

#~.,(b(y) Lb(x))  = #~.,(L(b(y)) b(x)), x, y E F 

In the physics literature this relation is usually written in terms of the 
matrix elements of L. Take {ei}i= j ...... an orthonormal basis of (R", ( . , . ) ) ;  
then it becomes 

L/j = Lj,. 

where Lo=#~(b(e i ) [ .b (e j )  ). These are the well-known forms of the 
reciprocity relations. 

It is clear that we realized above a rigorous mathematical model for 
this theory. For infinite lattice systems the Gaussian measure space F 
becomes the Wiener measure space (B, ~r introduced in Section 2; the 
phase space F should be identified to the infinite-dimensional real Hilbert 
space ~ff~. As dynamics we have chosen the generalized Glauber dynamics 
satisfying the symmetry (6), yielding finally the reciprocity relations for L 
in Theorem 4.3. Apart from the rigorous description of all this, the new 
item we added to the field is the explicit formula for the generator L as 
given in Theorem 3.2. All this was proved on the only condition of the 
measure # having normal fluctuations as formulated in Definition 3.1. 
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5. S M A L L  D E V I A T I O N S  A N D  LINEAR RESPONSE 

Here we have in mind that the basic measure p is an equilibrium state 
of the lattice system for a local Hamiltonian HA, A c ~(Zv), and at inverse 
temperature, say fl = 1. 

The corresponding Wiener measure fi constructed in Section2 
represents the equilibrium measure for the coarse-grained system, i.e., for 
the fluctuations of the system, in mathematical terms for the elements of 
L2(B,#). 

Now we are interested in small perturbations of the equilibrium 
measure #, yielding perturbations for the measure/7. 

Consider the perturbed Hamiltonian 

H A + f , ;  f cCL 
with a local fluctuation f , .  Clearly, the locally perturbed equilibrium 
measure is given by 

~(e z,. )/~(e-7") 

In a separate papeg 1~ we prove that under the supplementary condition 
that there exists a constant c ~ I~ + such that 

1~(.7,,*)1 ~ c~k! 

for all k E ~, the limit measure 

lira [#(e t".)/l~(e ~")] 
n ~ r / j  

exists as a measure /7/ on the Wiener space ( B, .,'Y;, ), which is absolutely 
continuous with respect to the measure fi and explicitly given by 

fit'(') = fi(e " h<.f).)//7(e bU I) 

where b is the map given in Theorem 3.2. 
We are not discussing here further in detail the microscopic construc- 

tion of these measures, but motivated by the above discussion, we define 
the following set of perturbed measures: 

g,={fir =fi(e-b<s)')~'~-z-~i~ ;Je gt';,} 

The measures/21 are also Gaussian on the Hilbert space ~ with the same 
variance as fi, but with a mean generally different from zero. Hence g, 
is a set of macroscopic states labeled by ~U u, i.e., there is a one-to-one 
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correspondence between gu and ~ , .  Moreover, the elements are equal as 
functionals on the set of macroscopic quantities + ~ =  {b(f),f~.~f;,}, 
namely the evaluation map f, f ~ ~ff~: 

f: ~-.+ ft: f(b(g))= b(g)(f) 

coincides with the linear functional fir: 

fir(b(g)) =.?(b(g)) = ( g, f ) ,, 

As usual, the thermodynamic potential of a perturbed state fir is given by 
the relative entropy: 

s(~.l~)= -~s log d~} 

A straightforward computation yields 

S(~11 ~) = -�89 ./), ,  = -�89 h(./) ),~ (1t 

Notice that the thermodynamic potential is quadratic in the perturbation 
variable fe.;,'f~,, i.e., we constructed a model such that the so-called 
harmonic approximation becomes exact. 

Furthermore, the map 

f ~  )r --* s07/.I 2) 

is Fr6chet differentiable and we are able to define for our model the 
thermodynamic forces as the Fr6chet derivatives of the thermodynamic 
potential: the force F r in the f direction is given by 

Fs= ~-~S(firl#~)= - ( f , "  )u = -b(f) (!2) 

The force is linear in the perturbation. 
Now we discuss the dynamics on the set of macroscopic states 4,. 

Through the central limit we obtained a dynamics on the macroscopic 
phase space, yielding an evolution ~7, on the macroscopic fluctuations. In 
the following theorem we show that as an immediate consequence of the 
reciprocity relations (10), the state space is globally invariant under the 
dynamics; i.e., the time evolution ~7" on gu defined by ~*~r=l{ro~, for all 
f~off~ maps gu into 4,: 

T h e o r e m  5.1. For all t eR+:  ~t:G-*G in particular 
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ProoL From the reciprocity relations (10) and the time invariance of 
/~, for all g e o,U~, 

= 1 7,e 

fi(e-bCf)) 

Ft( y ,( e - b(f ) ) eib(g) 
p(y,(e-b(f))  ) 

Using (9), we obtain 

fif( % eih(~) ) = fi( e - b ( z ' " f ) e i b ( g ) )  
Ft(e-b(r,f)) = ~r,f(eih(g)) | 

It is also interesting to remark that by this theorem the flow on the 
phase space ~ coincides with the dynamics on the set of perturbed states 
~,, i.e., the identification state space-phase space is dynamically invariant. 
In the physics literature (see, e.g., ref. 14) the thermodynamic f lux  is the 
time derivative of the macroscopic quantities: Jr, the flux in thefdirection 
(at t = 0), is given by 

d 
St(" )= ~ ~ ' (b( f ) )  ,=o 

The linear relations well known in fluctuation theory between the flux and 
the force in a particular direction immediately follow from (12). Further- 
more, by Lemma 4.1 we have: 

Corol lary  5.2. If the system (Cc,/~) shows normal fluctuations, 
then for all .fie .~;,, 

& = -LF  

By the equivalence of ~ and #~ one can also define the flux on the 
macroscopic state space by 

d 
~(Jf)  = fig(Jr) = ~ f ig~,(b(f))  

d 
= ~ ~ , g ( b ( f ) )  

This gives a direction for the generalization of the thermodynamic func- 
tionals to the quantum-mechanical situation, where the notion of phase 
space is no longer present. 

822/62/3-4-18 
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Finally, for the sake of completeness one can consider the quantity of 
entropy production of the perturbed measures: 

d 
' 7 (s  - dt  S(s  I ~)1,  = o; ~1" E g't~ 

A straightforward computation, using (I l), yields 

a(#f) = - < f ,  s >~,; f r  

and 

~(~r) = <Js, FI>~ 

By the negativity of the operator ~ (Lemma 4.1 ), one gets a rigorous proof 
of the positivity of the entropy production for all perturbations: 

~(~r)~>o, v ~ . ~ ,  

As in the quantum mechanical case, ~jS~ one shows, under very mild condi- 
tions on the generator L, that the equilibrium measure fi is characterized 
as the measure of minimal entropy production. 
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